

Predicting Microbial Co-Occurrence Across Farms Using Phylogeny and Network Structure

Shir Miryam Nehoray, Kesem Abramov, Geut Galai and Shai Pilosof

Department of Life Sciences, Ben-Gurion University of the Negev, Israel

1 Introduction

- Microbial co-occurrence networks are often incomplete due to technical and biological limitations¹.
- Such missing data limits our understanding of microbial interactions and function.
- Predictive approaches such as phylogenetic imputation and Singular Value Decomposition (SVD) can infer missing links in ecological networks ^{2,3}.
- It is unclear whether these approaches can be used to transfer knowledge between microbial communities in different areas.

Research goals

To predict microbial co-occurrence patterns across farms using phylogeny and network structure derived from a known farm.

Experimental Strategy

We used co-occurrence data from 7
farms, each representing a microbial co-

We extracted network components capturing
20% of the variance to predict co-occurrence.

Null model - we evaluated the predictions comparing RMSE values to 100 shuffled networks.

Farm A shuffled

Results

Microbes' Phylogenetic Tree

Based on 16S

More components needed in shuffled networks to explain 20% variance.

Conclusions

- Our current results indicate that phylogeny is not a good predictor of cooccurrence across microbial systems.
- Shuffled networks required more components to explain variation in structure, indicating a loss of structure.
- However, most cross-farm predictions did not outperform random expectations.
- Future work: test alternative phylogenetic models and imputation methods.

6 References

- **1.** Galai, G. *et al.* Regional processes shape the structure of rumen microbial co-occurrence networks. *Ecography (Cop.)* (2024) doi:10.1111/ecog.07430.
- 2. Nunes Martinez, A. & Mistretta Pires, M. Estimated missing interactions change the structure and alter species roles in one of the world's largest seed-dispersal networks. *Oikos* e10521 (2024).
- **3.** Strydom, T. *et al.* Food web reconstruction through phylogenetic transfer of low-rank network representation. *Methods Ecol. Evol.* **13**, 2838–2849 (2022).

